Posts

Valve test standards translate “quality” into measurable acceptance criteria. They define:

  • What to test (shell, seat, backseat, operational/functional, fire-safe, emissions, cryogenic, high-pressure gas, etc.)
  • How to test (media, pressure levels, duration, sequences)
  • What’s acceptable (leakage categories/classes, visual vs. measured rates)
  • Documentation (traceability, certificates, stamping/marking)

Choosing (and specifying) the right standard prevents disputes, makes FATs/SATs predictable, and ensures consistent field performance.

Maintenance

CORE STANDARDS “MAP”

Below is the practical landscape most plants and EPCs navigate:

  • General industrial isolation valves (metal/soft seat)
    • API 598 (North America)
    • ISO 5208 (International)
    • EN 12266-1/-2 (Europe)
    • ASME B16.34
  • Pipeline valves
    • API 6D / ISO 14313
    • API 6DSS / ISO 14723
  • Control valves
    • IEC 60534-4
    • FCI/ANSI 70-2
  • Waterworks valves
    • AWWA (C509, C515, C504, C507, etc.)
  • Fire-safe and safety-critical
    • API 607 / ISO 10497
    • API 6FA
  • Fugitive emissions (FE)
    • ISO 15848-1
    • API 641
  • Cryogenic services
    • BS 6364 and ISO 28921

API 598 VS. ISO 5208 VS. EN 12266-1

  • API 598: zero visible leakage for soft seats; limited for metal seats.
  • ISO 5208: Leakage Rates A–H; Rate A ≈ hermetic.
  • EN 12266-1: aligns closely with ISO 5208, adds EU-specific sequences.

PIPELINE VALVES: API 6D / ISO 14313

Adds DBB/DIB validation, cavity relief, operational torque, and pneumatic tightness for gas service. Stricter than API 598.

CONTROL VALVE LEAKAGE

Defined by IEC 60534-4 and FCI 70-2. Leakage Classes II–VI range from moderate shutoff to bubble-tight.

FIRE-SAFE STANDARDS

API 607, ISO 10497, and API 6FA: expose a pressurized valve to fire, then quench, ensuring containment.

FUGITIVE EMISSIONS

ISO 15848-1 quantifies stem leakage under cycles. API 641 focuses on quarter-turn valves.

CRYOGENIC

BS 6364 and ISO 28921: test at cryogenic temperatures, check sealing, torque, and leakage under cold soak and warm-up.

WATERWORKS

AWWA standards (C509, C515, C504, C507) emphasize hydrostatic proof, seat leakage, coating integrity, torque.

TEST METHODS ON FATs

Hydrostatic shell test, hydrostatic seat test, low-pressure air/gas seat test, backseat test, functional/operational tests, specialty tests (fire-safe, FE, cryogenic, etc.).

SPECIFICATIONS THAT PREVENT HEADACHES

  • API 598 for isolation valves
  • API 6D for pipeline valves
  • FCI 70-2 Class IV for control valves
  • API 607 for fire-safe
  • ISO 15848-1 Class A for emissions
  • BS 6364 for cryogenic

DOCUMENTATION & QA YOU SHOULD REQUEST

Mill certificates, calibrated test equipment, test records, valve ID, special certificates (fire-safe, FE, cryogenic).

SERIES PLAN

Part 2 – API/ASME/FCI deep dive
Part 3 – ISO/EN stack
Part 4 – Waterworks
Part 5 – Project spec templates.

Natural gas plays a vital role in meeting the world’s energy demand, and its safe transmission depends heavily on the performance of valves installed in pipelines. Valves regulate flow, control pressure, isolate sections of the pipeline, and provide emergency shutdown capabilities. Choosing the wrong type of valve not only reduces efficiency but can also lead to severe safety risks.

This article examines the types of valves used in natural gas pipelines, their features, material and standard requirements, and key factors engineers must consider when selecting them.

Natural Gas Pipelines

MAIN VALVE TYPES IN NATURAL GAS PIPELINES

Ball Valves

  • The most widely used valves in natural gas systems.
  • Advantages: Full-bore design minimizes pressure drop. Operated with a quarter-turn (90°), making them ideal for emergency shutoff.
  • Applications: Commonly used in long-distance transmission pipelines and city gate stations.

Gate Valves

  • Preferred in large-diameter transmission lines.
  • Advantages: Minimal flow resistance when fully open.
  • Disadvantages: Slower to operate compared to ball valves.
  • Example: Frequently installed in 36” and larger pipeline sections.

Butterfly Valves

  • Compact and cost-effective solutions for large-diameter lines.
  • Advantages: Lightweight, simple construction, and economical.
  • Applications: More common in distribution networks operating at medium pressure.

Control Valves

  • Designed to regulate flow rate and pressure.
  • Features: Can be integrated into SCADA and automation systems.
  • Example: LNG terminals rely on control valves for continuous adjustment of gas flow.

Safety and Relief Valves

  • Protect pipelines from overpressure events.
  • Operation: Open at a preset pressure, venting gas to the atmosphere.
  • Standard: Designed according to API 520/521.

Check Valves

  • Prevent reverse flow, protecting compressors and downstream equipment.
  • Example: A standard component in compressor stations.

MATERIAL SELECTION AND STANDARDS

  • Common Materials:
    • Carbon steel (ASTM A105, A216 WCB)
    • Low-temperature steels (ASTM A350 LF2)
    • Stainless steels (AISI 304, 316) for corrosive environments
  • Relevant Standards:
    • API 6D – Pipeline valves
    • ASME B16.34 – Pressure-temperature ratings
    • ISO 14313 – International pipeline valve standard

KEY SELECTION CRITERIA

Pressure Class

Valves are designed according to ANSI classes ranging from 150 to 2500.
Example: A 70-bar transmission pipeline typically requires a Class 600 valve.

Flow Coefficient (Cv)

The capacity of a valve is defined by its flow coefficient:

Q = Cv · √(ΔP / G)

  • Q: Flow rate (m³/h)
  • ΔP: Pressure drop (bar)
  • G: Specific gravity of gas

Temperature and Operating Conditions

  • Natural gas is usually transported between -20 °C and +60 °C.
  • Valve seals and body materials must be compatible with this range.

Automation and Remote Control

  • Critical stations require actuated valves (electric, pneumatic, or hydraulic).
  • Example: City gate stations often use pneumatically actuated ball valves integrated into SCADA.

Safety and Maintainability

  • Valves with Double Block & Bleed (DBB) design improve maintenance safety.
  • They also allow testing of pipeline segments under pressure.

REAL-WORLD APPLICATIONS

  • TANAP Project (Turkey): The 1,850 km Trans-Anatolian Natural Gas Pipeline relies on API 6D ball valves for high-pressure transmission.
  • European Distribution Networks: Medium-pressure networks frequently use butterfly and control valves.
  • Compressor Stations: Check valves are indispensable to prevent backflow damage.

CONCLUSION

Valves in natural gas pipelines are essential for safety, efficiency, and operational continuity. From ball and gate valves to butterfly, control, and relief valves, the selection depends on pipe diameter, pressure class, flow capacity, and automation requirements.

Improper valve selection can result in high operational costs or serious safety hazards. Therefore, engineers must rely on API, ASME, and ISO standards, ensuring each valve is designed and chosen for the specific conditions of the pipeline.